Product Code Database
Example Keywords: playstation -light $55
   » » Wiki: Gate Oxide
Tag Wiki 'Gate Oxide'.
Tag

Gate oxide
 (

Rank: 100%
Bluestar Bluestar Bluestar Bluestar Blackstar

The gate oxide is the layer that separates the terminal of a (metal–oxide–semiconductor field-effect transistor) from the underlying source and drain terminals as well as the conductive channel that connects source and drain when the transistor is turned on. Gate oxide is formed by thermal oxidation of the silicon of the channel to form a thin (5 - 200 nm) insulating layer of . The insulating silicon dioxide layer is formed through a process of self-limiting oxidation, which is described by the Deal–Grove model. A conductive gate material is subsequently deposited over the gate oxide to form the transistor. The gate oxide serves as the layer so that the gate can sustain as high as 1 to 5 MV/cm transverse in order to strongly modulate the conductance of the channel.

Above the gate oxide is a thin electrode layer made of a conductor which can be , a highly doped , a such as , a (TiSi, MoSi2, TaSi or WSi2) or a sandwich of these layers. This gate electrode is often called "gate metal" or "gate conductor". The geometrical width of the gate conductor electrode (the direction transverse to current flow) is called the physical gate width. The physical gate width may be slightly different from the electrical channel width used to model the transistor as fringing electric fields can exert an influence on conductors that are not immediately below the gate.

The electrical properties of the gate oxide are critical to the formation of the conductive channel region below the gate. In NMOS-type devices, the zone beneath the gate oxide is a thin n-type inversion layer on the surface of the p-type semiconductor substrate. It is induced by the oxide electric field from the applied gate VG. This is known as the inversion channel. It is the conduction channel that allows the to flow from the source to the drain. Fundamentals of Solid-State Electronics, Chih-Tang Sah. World Scientific, first published 1991, reprinted 1992, 1993 (pbk), 1994, 1995, 2001, 2002, 2006, . -- (pbk).

Overstressing the gate oxide layer, a common failure mode of MOS devices, may lead to gate rupture or to stress induced leakage current.

During manufacturing by reactive-ion-etching the gate oxide may damaged by .


History
The first (metal–oxide–semiconductor field-effect transistor, or MOS transistor) was invented by Egyptian engineer and Korean engineer at in 1959. In 1960, Atalla and Kahng fabricated the first MOSFET with a gate oxide thickness of 100 nm, along with a length of 20μm.
(2025). 9780471333722, Wiley. .
In 1987, led a research team at the IBM Thomas J. Watson Research Center that demonstrated the first MOSFET with a 10 nm gate oxide thickness, using gate technology.

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs